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A MATRIX MODEL FOR THE LINEAR FEEDBACK
SH11T REGISTER

INTRODUCTION

A linear feedback shift register (LFSR) is a device that produces a long period pseudorandom bit
stream (a sequence of zeros and ones) that is determined completely by the settings on a relatively
small number of switches and a relatively short initial bit stream. The length of the period of the out-
put is exponentially related to the key length, i.e., the number of switches whose settings determine
the output. This suggests the possibility of using the output of an LFSR as an additive to a plain text
bit stream to produce an enciphered bit stream. Indeed, such applications of LFSRs have been and
still are made.

But it is important to be aware of some dangers involved in the use of LFSRs in cryptographical
applications. A simple LFSR system is vulnerable to cryptanalysis based on the possession of plain
text of length twice that of the key, even though the period of the LFSR is much longer. This cryp-
tanalysis is discussed later in this report.

Although the author believes Theorem 3 and the related results on subperiods of LFSRs to be
new, much of the material in this report is discussed at length in the literature, notably in the excel-
lent book [1] by Solomon W. Golomb. The cryptanalysis of the LFSR is discussed in Ref. 2 (pp.
121-129), and a basic introduction is given in a short appendix to an article by G. J. Simmons, which
is reprinted in Ref. 3 (pp. 290-294). However, some discussions in the literature are, in this author's
opinion, a bit hard to follow or are flawed by some basic mathematical errors. The motivation for
this report is to provide a correct, coherent, and easily understandable treatment of LFSRs based on a
matrix model. The matrix model is chosen because it fits in well with the author's area of expertise
and because this approach should be accessible to the intended audience of this work.

Following this introduction, the hardware of the LFSR is briefly discussed and its operational
performance is stipulated. The device is then represented as a finite state device. The latter is used
to introduce the matrix model, which is then employed to investigate the periodicity and randomness
properties of the LFSR. This model is also exploited to explore the cryptanalysis of a simple LFSR
bit stream secrecy system. The report ends with two naive suggestions for constructing secure sys-
tems based on LFSRs. This matter warrants further study.

DESCRIPTION OF THE LFSR

An n-stage linear feedback shift register (LFSR) consists of a sequence of n binary storage de-
vices (flip-flops, memory locations, registers, etc.) labeled F1 , F2 , ... , F,, in Fig. 1. Each device
stores either a 0 or a 1. Initially, the value ai- 1 is stored in device Fi for i = 1, 2, . . , n. At each
pulse of a controlling clock, the value in device F +I is shifted to device Fi, 1 < i c n - 1. The
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W. P. WARDLAW

Fig. 1 - Schematic of an n-stage LFSR

new value in Fn is determined by the feedback, which is the sum modulo 2 of the values in those dev-
ices Fj for which the switches Ki are closed. Thus, the new value an +k placed in device Fn at the kth
pulse of the clock is given by the nth order recursion

n-i
an +k = r ciak +i (addition modulo 2), (1)

i=o

where each ci is 0 if switch Ki + 1 is open, or 1 if switch Ki + 1 is closed. The values of the constants
ci comprising the coefficient vector c = (co, c, . .. , Cn, - ) make up an n bit key, and the entries in
the initial state vector a = a(O) = (a o, a1, . . . , an, -1) make up an n bit initial condition, which
together completely determine the output of the shift register. (The two vectors c and a together can
be thought of as a 2n bit key for the particular bit stream beginning with a.)

Equation (1) completely defines the LFSR and its output, the infinite sequence or bit stream
A = (ai) = (a0, a I, ... ). This equation is the basis of the remainder of this report.

THE FINITE STATE DEVICE

Instead of viewing the sequence of bits put out by the LFSR, it is useful to consider the state
vectors S = (sI, S2, .. ., saw) of the LFSR. Here, si is the value in the ith binary register Fi. Then
we can consider the transition from a given state S to the resulting state -s'. This model is called a
finite state device since its operation is completely described by the transitions S - T' among the fin-
itely many state vectors s. The new state s' = (s , s , ... , sn) is given by s!' = si+I for
1 _ i < n and sn = C * S * (The latter value is obtained by substituting si for ai in Eq. (1).)

Clearly, there are 2n possible states.

Sometimes it is convenient to represent the state ? = (SI, S2, .. , sO) by the binary notation
n

for the number n(-s) = si2n -. For example, (1, 0, 1) and (0, 1, 1) correspond to 101 and 01 1,
i =1

respectively. This representation is used in the following examples. The notation (x.y) indicates
equation (x) specialized to Example y, as in Eq. (1.1) or Fig. 1.2 below. A similar convention is
used to number the figures in the examples.

2
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Example 1. n = 3, c = (1, 0, 1).

OUTPUT

Fig. 1.1 - Schematic of LFSR

ak+3 = ak + ak+2 (1.1)

Finite State Diagram

Bit stream: 1 0 0 111 0 . 1 0 0 111 0 . 1 0 0 111 0....

Observe how the binary entries of successive states (in boxes) in Example 1 shift to the left,
with a new entry c * S added on the right. (Other authors use various notations, changing the shift
direction and other aspects of the discussion. The interested reader should thoroughly learn one nota-
tion; then it will be easy to translate it to any other notation.)

3
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Example 2. n = 3, c = (1, 1, 0).

OUTPUT

Fig. 1.2 - Schematic of LFSR

ak+3 = ak + ak+ (

Finite State Diagram

Bit stream: 1 0 0 1 0 1 1 . 1 0 0 1 0 1 1 ...

4
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Example 3. n = 3, c = (0, 1, 1).

OUTPUT

Fig. 1.3 - Schematic of LSFR

Finite State Diagram

Possible bit streams: 1.0.0... , 0.011.011...

Example 3 is a degenerate three-stage shift register; it is essentially the two-stage LFSR of
Example 4, except that the bit stream can begin differently before becoming periodic.

5
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W. P. WARDLAW

Example 4. n = 2, c = (1, 1).

OUTPUT

Fig. 1.4 - Schematic of LSFR

(1.4)ak+2 = ak + ak+I

Finite State Diagram

Bit stream: 101.101.101 ...

Note that the bit streams in Examples 3 and 4 are the same except at the beginning, and the
nontrivial bit streams have period 3. An LFSR is degenerate whenever there is no feedback from the
bit register F1 , or, equivalently, whenever the constant c0 = 0 in Eq. (1).

In all of these examples, the bit stream is periodic. The period turned out to be the number of
states in a cyclic chain of states. The state vector of an n-stage LFSR is an n-tuple of zeros and ones,
so there are 2' possible states. Since the zero state 0 = (0, 0, ... , 0) leads only to itself, it is not
taken as an initial state to produce a bit stream. Thus the period cannot exceed 2' - 1, the number
of nonzero state vectors. A period of p = 2' - 1 will be called maximum. The next section gives
greater insight on the length of the period of an LFSR.

6
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THE MATRIX MODEL

The transition of the n-stage LFSR from the state s = (si, ... , sn) to its successor state
s= (sI, . .. , s,,) is given by the n linear equations

iI = Si+I if I c i < n,

Sn = Co SI + *-- + Cn-1Sn

In matrix form, s' = -M,

where M = (mij) is the n x n matrix with

I

if i =j + 1,
if j = n,
otherwise.

(2)

(3)

(4)

0 0 ... 0
1 0 ... 0

0 1 ... 0

0 0 ... 1 Cn-I

If c0 = 0, the matrix M is singular and WM = OM = 0 for u- = (1, 0, ... , 0). Thus
= M= ( + ui)M, and every successor state Ts' has two (or more) precedents, s and s + iU. This

is the degenerate case in which the LFSR is essentially an (n - 1)-stage register. (This situation was
encountered in Example 3. The three-stage LFSR of Example 3 is essentially the same as the two-
stage LFSR of Example 4.)

Henceforth, we will usually assume that c0 = 1 and M is nonsingular. Thus, the mapping of s
to s' = YM is a permutation of the 2 n state vectors. The zero vector is sent to itself and therefore ini-
tializes a bit stream consisting entirely of zeros.

There are only finitely many n x n matrices over the two-element field GF(2) = Z2 = [0, 11
of integers modulo 2. Hence, there are integers s and t such that 0 c s < t and Ms = M'. Since
M is invertible, this means that Mh = I is the identity matrix for h = t - s. Let p be the smallest
positive integer such that MP = I; p is called the period of M and of the corresponding LFSR.

Now the matrix M defined by Eq. (4) is a companion matrix M = C(m) of the polynomial

m(x) = X' - C X'-I _ ... - clx - cO, (5)

7
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as described in Ref. 4, (p. 190). The characteristic and minimum polynomial of M is m(x). (See
Ref. 4, p. 190, Corollary 1 to Theorem 2). We call m(x) the characteristic polynomial of the LFSR
corresponding to M. It follows from the definition of the minimum polynomial that mi(M) = 0, and
that f(M) = 0 for the polynomial f(x) if and only if m(x) divides f(x). In particular, Mk - I = 0 if
and only if m(x) divides xk - 1. These remarks prove

Theorem 1. Let M be a nonsingular matrix over a finite field K with minimum polynomial
m (x). Then the period p of M is the smallest positive integer such that m (x) divides xP - 1.

The exponent of a polynomial ftx) over a field K is defined to be the smallest positive integer k
such that f(x) divides xk - 1, or 0, if no such k exists. Theorem 1 shows that the period of a non-
singular matrix over a finite field K is the same as the exponent of its minimum polynomial. The fact
that any such matrix has a positive period establishes the fact that if f(x) is a monic polynomial over a
finite field K and f(O) • 0, then f has a positive exponent.

We are interested in the period of the bit stream a0, al, a2 , ... of an LFSR, that is, the smal-
lest positive integer q such that ak +q = ak for all positive integers k. Of course, this depends on the
choice of the initial vector a = (a0, . a. ,, -n1). Define

a (k) = (ak, ak + 1, ak +n - ) (6)

Then

a(k) = a(k - 1)M = aMk, (7)

where a = a(0) is the initial vector and k is any positive integer. Thus the bit stream A = (ak) has
period q if and only if q is the smallest positive integer such that a = a. Of course, this does not
require that Mq = I, but merely that Mq - I be singular. It has already been observed that
q _ 2n - 1; since there are only 2n - 1 nonzero n-tuples of zeros and ones, there must be a dupli-
cation among the vectors aiMk for k = 0, 1, 2, ... , 2- - 1.

The zero bit stream has period 1. If a nonzero bit stream has period q, then q is called a sub-
period of the LFSR. In Examples 1 and 2, q = 23 - I = 7 is the only subperiod, which is also the
period p of these LFSRs.

The matrices are

[ 0 1 [ 0 11
M= 1 0 0 and M= 0 1 , respectively.

01 1 010

In each case, p = 7 = min [k E N : Mk - Il. This is more easily seen from the minimum polyno-
mials m(x) = x3 + x2 + 1 and m(x) = x3 + x + 1, respectively. In each case, m(x) divides

x7 -1 = (x - )(x3 + x + 1)(x3 + x2 + 1), but m(x) does not divide xk- 1 for k < 7.

In Example 4, q = 22 - 1 = 3 is the only subperiod, and the period is p = 3. In all three of
these cases, the period p = 2- - 1 is maximum, and every subperiod is equal to p.

8
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The following three examples illustrate other possibilities for the period and subperiods of an
LFSR. In these examples, the state diagrams are abbreviated by omitting the arrows between state
vectors and listing the vectors of the form WMk in a column under a.

States: 000 111 001
010
100

m(x) = x3 + 1 = 3 - 1 = (x -

Example 6. n = 3, c = (1, 1, 1),

States: 000 111 010 001
101 011

110
100

Period: 4

Subperiods: 1, 2, 4.

m(x) = x3+ x2 + x + 1 = (x - 1)3.

000 1

1 0 0 1
Example 7. n = 4, -c = (1, 1, 1, 1), M = 0 1 01 1.

0 01 1

States: 0000 0001
0011
0110
1100
1000

0010
0101
1010
0100
1001

0111
1111
1110
1101
1011

Period: 5

Subperiods: 5, 5, 5.

m(x) = x4 + x3 + x2 + x + 1.

Observe that in every example given, the period p of the LFSR is also the largest subperiod.
This is always the case.

9

Example 5. n = 3,

000 1

c = (1, O. 0), M = I 0 0 .
0 1 0

011
110
101

Period: 3.

Subperiods: 1, 3, 3.

- l)(x1 + x + 1).

0 0 1

M = 1 0 1 .

0 1 1
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Theorem 2. Let p be the period of the nondegenerate n-stage LFSR with matrix M. Then the
bit sequence with initial vector a = (1, 0, . . ., 0) has period p, n c p < 2n, and every subperiod q
divides p. Moreover, if p is maximum (p = 2n - 1), then p is the only subperiod of the LFSR.

Proof: Let s be the period of the bit stream with initial vector a. Then s is the smallest posi-
tive integer such that WiM = a, and a(k)M' = aMs +k = aiMk = a(k) for every positive integer k.
Thus M' acts as the identity on the vectors a(1), a(2), ... , a(n). But

a(l) = WM = (0, 0, ... , 0, 1) = (al, a2 , ... , an) and a(k) = (ak, ak+1, ... , ak+nl1) begins
with n - k zeros followed by a, = 1 in position n - k + 1, so the set [a_(), a(2), ... , a(n)}
forms a basis of the vector space Kn of all n-tuples with entries in K = GF(2). Since Ms acts as the
identity on a basis, it must be the identity. Hence, s is the smallest positive integer such that Ms = I;
that is, s = p is the period of M.

Now, p is a subperiod of M, so (as already shown) p < 2" - 1. Since a(p + 1) = a(l), and

{a(l), a(2), ... , ai(n)) is independent, it follows that n c p. (The latter is also a corollary of
Theorem 1, since m(x) divides xP - 1 and m(x) has degree n.)

Suppose that q is a subperiod of M. Thus, for some nonzero vector v, q is the smallest positive
integer such that v = VMq Let p = dq + r with 0 c r < q. Then MP = I, so
v = vMP - -+ (Mq)dMr - vM'. The minimality of q implies that r = 0, so q divides p.

Finally, suppose the period p of M is maximum. That is, p = 2n - 1. Then the 2n - 1 vec-
tors a(k) = &Mk for 0 c k c 2n - 2 include all the nonzero vectors in Kn, and each of these vec-
tors has period p. Clearly, then, the only subperiod is q = p = 2n - 1. ]

The reader may have noticed from the examples that M has subperiod 1 if and only if 1M = 1
for 1 = (1, 1, . . . , 1). This is the case exactly when the coefficient vector c has an odd number of
ones, and the latter is equivalent to m(1) = 0. Thus 1 is a subperiod if and only if x - 1 divides
m(x). This can be generalized as follows.

Theorem 3. Let m(x) be the characteristic polynomial of an LFSR. Then for any positive
integer q, the LFSR has a subperiod q if and only if gcd(m (x), x -1) is not 1 and does not divide
xk -1 for any k < q.

Before proving Theorem 3, we apply it to Examples 1 to 6 previously stated. Recall that if

3 = (c0, c1, .I. , cn-1), then m(x) = x" + cn i + .I.x. + c1x + cO.

Example 1. mi(x) = X3 + X2 + 1 is irreducible and divides X -I = (x - 1) (X3 +

X + 1)(x 3 + x2 + 1), so the LFSR has period 7. Since gcd(m(x), Xk - 1) = 1 for k < 7, 7 is the
only subperiod, as we already knew from Theorem 2.

Example 2. m(x) = 3 + x + 1 has period and only subperiod 7, exactly as in Example 1.

Example 3. m(x) = 3 + x2 + x = x(x2 + x + 1). (m(0) = 0, so the matrix M is singular
and the LFSR is degenerate.) Since gcd(mi(x), x3 - 1) = X2 + x + 1 divides neither x - 1 nor
x2 - 1, the LFSR has subperiod 3. Moreover, gcd(m(x), Xk - 1) = 1 unless 3 divides k, so 3 is
the only subperiod. Since M is singular, no power of M is equal to L. However, M 3 +k = Mk for
every k > 1, so we say that M and the LFSR have period 3.

10
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Example 4. m(x) = x2 + x + 1. Since gcd (m (x), x3 - 1) = mi(x) divides neither x - 1
nor x2 - 1, 3 is a subperiod. Since gcd(m(x), Xk - 1) = 1 unless 3 divides k, in which case
gcd(m(x), x3h - 1) = m(x), 3 is the only subperiod. It follows that 3 is also the period. (The latter
is also clear because m (x) divides x3 - 1.)

Example 5. mi(x) = x3 - 1 = (x - 1)(x2 + x + 1). Since gcd (m (x), x - 1) = x - 1, the
LFSR has a subperiod 1. Since m(x) = x3 - 1, the LFSR has a subperiod and period 3.

Example 6. m(x) = x3 + x2 + x + 1 = (x - 1)3 Since gcd(m(x), xk - 1) = xk - 1 for
k = 1, 2, and gcd(m (x), x4 - 1) = m(x), the LFSR has subperiods 1, 2, and 4, and has period 4,
since m (x) divides x4 - 1.

The proof of Theorem 3 is facilitated by the following lemmas.

Lemma A. Let A be a square matrix with minimum polynomial m(x), and let p(x) be any
polynomial. Then p(A) is nonsingular if and only if gcd (m (x), p(x)) = 1.

Proof: Let d(x) = gcd(m (x), p(x)) = f(x)m (x) + g(x)p(x). If d(x) = 1, then
I = d(A) = f(A)m(A) + g(A)p(A) = g(A)p(A), since mi(A) = 0. Hence p(A) has inverse g(A), so
p (A) is nonsingular. On the other hand, if d(x) has degree > 1, write m(x) = mo(x)d(x) and
p(x) = po(x)d(x). Since mo(x) has lower degree than m(x), m 0 (A) * 0, but
p(A)m o(A) = p 0 (A)m (A) = 0. Hence, p (A) is singular. CZ

Lemma B. (Primary Decomposition Theorem) Let T be a linear operator on the finite dimen-
sional vector space V over the field K. Let

e1 2 ermn = Pi P2 . .Pr

be the factorization of the minimum polynomial m of T into powers of distinct irreducible monic poly-
nomials pi over K.

Let Vi be the null space of Pi(7 )ej, i = 1, 2, ... , r. Then

(a) V = V1 E V2 G ... 33 Vr,

(b) each Vi is invariant under T, and

(c) if Ti is the restriction of T to Vi, then the minimum polynomial for Ti is pie 

The proof of this result is given in Ref. 4 (Theorem 12, pp. 180-181).

Lemma C. Let T be a linear operator on the finite dimensional vector space V over the field K
with minimum polynomial m, and let p be any polynomial over K. If Tw is the restriction of T to the
null space W of p (T), then the minimum polynomial of Tw is mw = gcd(m, p).

Proof: Since p(Tw) = 0, it follows that mW divides p. Moreover, mW divides m, since
m(Tw) = 0. Hence, mW divides d = gcd(m, p).

11
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Let d = pila ... Pkk be a factorization of d into distinct monic polynomials pi that are irreducible
over K. Then

b= .. bk moe 4e
P = Pop .. Pk and m = Iodel *kt

where P0 and m0 are polynomials such that gcd(po, m) = gcd(mo, p) = 1. For each
i = 1, 2, ... , k there is a vector vi in Vi (see Lemma B) such that vi pi(7)e' = 0 * v p,(7)e&-I,
since pe, is the minimum polynomial of T restricted to Vi. Now, ai = min (bi, ei), so for each
i = 1, 2, ... , k, there is a vector wi in Vi such that w3p.(T)a1 = 0 * ip 1(T) . (Simply let

= vipi(T)ei , where v is the vector found above.) Thus, i is in W. Now mw = pc'
... Pk with ci < ai, since it divides d = ka ... 0k But cj < aj implies Wjmw() =

Wjpj(Tf)c (mwlp?')(T) * 0, since w3p3(7T)c is a nonzero vector in Vj and (mwip? )(T) acts nonsingu-
larly on Vp. Therefore, each ci = ai and mw = d as claimed.EI

Lemma D. Suppose iv has period q with respect to the matrix A and 'Ak = v for some k > q.
Then q divides k.

Proof: By definition, q is the smallest positive integer such that vAq = v Let k = qd + r
with 0 c r < q. Then jv = iAk = YA qd+r = V(Aq)dAr = j;Ar implies r = 0 by the minimality of
q. Therefore, q divides k.EZ

We are now ready to prove Theorem 3. We apply the lemmas to the matrix M of the LFSR.
Lemmas B and C will be applied to the matrix M interpreted as a linear transformation on the vector
space K,, of all n-tuples of elements in the field K = GF(2) = Z2 of integers modulo 2.

Proof of Theorem 3: Consider an LFSR with matrix M and characteristic polynomial m. Let q
be a positive integer and let W be the null space of Mq- I. By Lemma C, d = gcd (m, Xq- 1) is
the minimum polynomial of the restriction Mw of M to W. If d divides xk -1 for k < q, then
MkW- I = 0 and iMk = -v whenever jM q = v (i.e., whenever -v is in W), so q is not a subperiod of
M. Hence, if q is a subperiod of M, then d does not divide xk - 1 for any k < q. Also, if q is a
subperiod, Mq - I is singular, so d = gcd(m, X q- 1) * 1 by Lemma A.

On the other hand, suppose d * 1 and does not divide xk - 1 for any k < q. Leta, ad = pi ... Pr', where each pi is a monic irreducible polynomial over K, and let
W = W, G ... G Wr be the primary decomposition of W, as in Lemma B. For each i = 1, . . ., r,
let wi in Wi satisfy w1Pi(M) = 0 * ipi(M) 0 1, and let w = w-I + + Wr. Now WM =

since W- is in W. Suppose, if possible, that W- has period k < q. Then k divides q by Lemma D and
xk -1 divides -1,so gcd(m(x), xk1) = r with bi < ai for 1 i c r. Since d
does not divide xk - 1, there is a j such that bj < a1. But then W(Mk -I)E 1 =iw1 (Mk -I) * 0
(Ej is the projection of W onto Wj, and it commutes with M) since ;i3jpj(M)b * 0. This contradicts
W having period k. Therefore jv has period q, and q is a subperiod of M. This completes the proof
of Theorem 3.D]

As we have seen, the characteristic polynomial m(x) of an LFSR is sufficient to determine all
the periods of the LFSR. It is usually desirable to make the subperiods as large as possible. That is,
we want the period p of the LFSR to be the only subperiod. The next corollary shows how to accom-
plish this goal.

Corollary 4. Let m(x) be the characteristic polynomial of an LFSR with period p. If m(x) is
irreducible, or, if p is prime and mn(1) w 0, then p is the only subperiod of the LFSR.

12
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Proof: By Theorem 1, p is the smallest positive integer such that m (x) divides xP - 1. If m(x)
is irreducible, it follows that gcd(m (x), xk - 1) = 1 for any k < p, and hence Theorem 3 shows
that p is the only subperiod. If p is prime and q is a subperiod, q divides p by Theorem 2, so q = 1
and gcd(m (x), x - 1) * 1, again by Theorem 3. But the latter implies x - 1 divides mi(x) and
m (1) = 0, contradicting the hypothesis.CE

The following example shows that the converse of Corollary 4 is false.

Example 8. m(x) = (X4 + X + 1) (X4 + X3 + 1) divides x " -1 = (x- 1)(x2 + x + 1)
(X4 + X + 1) (X4 + X3 + 1) (X4 + X3 + x 2 + x + 1), but gcd(m(x), xk- 1) =1 for k < 15,
so m(x) has period and subperiod 15, but no other subperiods.

It has already been observed that an n-stage LFSR can have period at most 2n - 1. Now we
investigate how to obtain such maximum period LFSRs.

Lemma 5. If f(x) * x is an irreducible polynomial over GF(2) of degree n, then f(x) divides
X 2 - 1

Proof. The algebraic extension L of K = GF(2) corresponding to f(x) is of degree n, so L has
2" elements and is the splitting field of the polynomial x2 - x = x(x 2 "1 - 1). Hence, f(x)
divides x2 -I -1. (See Ref. 5, p. 39 Lemma 3.2 and p. 169 Theorem 16.3.)Z

Corollary 6. If m(x) has maximum exponent, then m (x) is irreducible.

Proof. As usual, assume m(x) has degree n. If m(x) is reducible, it has an irreducible factor
f(x) of positive degree r < n. Hence, f(x) divides x 2 - 1 -1, so gcd(m, xk - 1) * 1 for some
k s 2r - 1 < 2n - 1, and there is a subperiod q < 2n - 1, by Theorem 3. Thus, Theorem 2
shows that m(x) does not have maximum exponent.E

Now we see that the maximum period p = 2" - 1 can only be achieved when m(x) is irreduci-
ble, and in this case, p is also the only subperiod. The latter is of importance, since it guarantees a
period of maximum length 2n - 1 will be achieved for any choice of a nonzero vector a = a(0).
One problem remains-the irreducibility of m(x) does not guarantee it has maximum exponent.
Indeed, the fourth degree polynomial m(x) - x4 + x3 + x2 + x + 1 given in Example 7 is irredu-
cible, but it has exponent 5 rather than 2 - 1 = 15. The problem is certainly not insurmountable.
Golomb's book in Ref. 1 (p. 40) shows that there are

X(n) = 0(2' - 1)/n (8)

polynomials of degree n that have maximum exponent; (4 is the Euler totient function; 4i(k) is the
number of positive integers less than k, which are relatively prime to k). Golomb's tables (pp. 62-65
and 97-107) list some of these polynomials of maximum exponent.

However, one can also guarantee that m (x) has maximum exponent as follows.

Corollary 7. If 2n _ 1 is prime, then each irreducible polynomial m(x) of degree n has max-
imum exponent.

Proof. Let r = 2n _ 1. m(x) divides xr - 1, by Lemma 5, so the companion matrix M of
m (x) satisfies Mr = I. Hence, M has period p with n c p c r (by Theorem 2), and p divides r by
a standard group theoretical argument (or by Lemma D, using v = (1, 0, ... , 0) = a as vector of
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period p given by Theorem 2). Since r = 2" - 1 is prime, n > 1. Thus p > 1 and p divides the
prime r, sop = r = 2" - 1. E

Primes of the form 2n - 1 are called Mersenne primes. Golomb has a table in Ref. 1 (Table
E1-1, p. 37) that shows the first 23 Mersenne primes 2n - 1 obtained by taking n = 2, 3, 5, 7, 13,
17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, and
11213. Thus, if m(x) is an irreducible polynomial of degree n for any of these values, m(x) has
maximum exponent p = 2n - 1.

RANDOMNESS PROPERTIES

A bit stream arising from an n-stage LFSR with maximum period p = 2n - 1 satisfies the fol-
lowing "randomness" properties:

R1. The sequence a(k) for 0 c k < 2n - 2 contains exactly 2"n1 ones and 2n-I - 1 zeros.

R2. In every period of the bit stream, if 0 < k < n - 1, there are twice as many runs of k
zeros as there are of k + 1 zeros, and the number of runs of k ones is the same as the number of
runs of k zeros.

R3. The autocorrelation function C(t) has two values. Explicitly,

pC(t) = 5 ( l)a(k)+a(k+t) = if t =0,
PC k=1 lF-I if 0< t< P. (9)

All of these properties arise from the fact that the p = 2" _ 1 vectors a(k) with 1 c k c p
contain each nonzero n-tuple of 0's and l's exactly once. For example, the five-stage LFSR with
m (x) = x5 + x2 + 1 has maximum period 31 = 25 - 1. One period of its bit stream is

0000100101100111110001101110101. (10)

It has 15 zeros and 16 ones, thus it satisfies RI. The runs of zeros and ones are counted below. (A
run of L ones is a zero followed by exactly L ones and another zero.) The symbols No(L) and
N1 (L), respectively, denote the number of runs of zeros and ones, of length L.

L No(L) N1 (L)
1 4 4
2 2 2
3 1 1

4 1 0
5 0 1

Thus, the bit stream (10) satisfies property R2. Property R3 also holds for this bit stream. Equation
(9) clearly holds for t = 0. The reader can check Eq. (9) for 0 < t < p = 31 by writing the bit
stream (10) horizontally and then rewriting it underneath shifted t places to the left and wrapped
around to the end. When t = 5, one obtains

0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1

0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 10 1 0 0 0 0 1

+ + + + + + + +. + + + + +
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(The +'s indicate vertical matches.) For each t there will be 15 vertical matches between the two
sequences.

S. Golomb proves in Ref. 1 (pp. 4345) that maximum period LFSR bit streams satisfy the ran-
domness properties Ri through R3. In the interest of brevity, we forego the presentation of his
proofs here.

CRYPTANALYSIS OF THE LFSR

The long length 2" - 1 of the period of the bit stream compared to the relatively short length
2n of the key, as well as the random nature of the bit stream, suggest that the LFSR bit stream be
used as an additive to plaintext to produce scrambled text. However, note that the linear relationship
between the key and the bit stream output makes the LFSR vulnerable to the following cryptanalysis.

Suppose the antagonist can obtain 2n bits of ciphertext yi for 1 c i < 2n and corresponding
plaintext xi for 1 < i < 2n. Since yi = xi + ai (addition in GF(2) = Z 2), the corresponding bit
stream ai = yi + xi (1 c i c 2n) can be recovered by using addition modulo 2. Thus the vectors

a(k) = (ak, ak+ -, . . ak+n-)

(Eq. (6)) can be constructed for 1 c k c n + 1. Thence the n x n matrices A and B, whose kth
rows are a(k) and a(k + 1), respectively, can be constructed. Recall from Eq. (7) that

a(k)M = a(k + 1), (11)

where M is the matrix of the LFSR. Thus, AM = B and

M = A-1B (12)

can be obtained by inverting the nonsingular matrix A. (The nonsingularity of A follows from the
independence of [a(1), . .. , a(n)}, as shown in the proof of Theorem 2.) Then the matrix M can be
used to produce the entire bit stream by Eq. (11), thus completing the cryptanalysis.

The above analysis seems to presume that the cryptanalyst had prior knowledge of the number n
of stages of the LFSR. However, this need not be the case. The cryptanalyst can determine n as the
number of "lengthened" vectors a'(k) = (ak, ak+1'... , ak +÷) s 2 n - 1 in a maximal indepen-
dent set [a '(k) : k = 1, 2, ... , n J. All the cryptanalyst needs is 2n or more consecutive bits of the
LFSR bit stream.

POSSIBILITIES FOR SECURE SYSTEMS

In this section we discuss some possible ways to overcome the vulnerability of LFSRs to cryp-
tanalysis. The comments here are only naive suggestions to consider. The security of a secrecy sys-
tem can only be validated by the failure of the concerted efforts of a team of expert cryptanalysts.

One suggestion is to use two (or more) LFSRs of periods p and q and add their bit streams.
The resulting bitstream would have period equal to the least common multiple of p and q, or to the
product pq, if p and q were chosen with no common factors. Thus one would want an m-stage and
an n-stage LFSR with m and n relatively prime, having necessarily relatively prime maximum periods
p = 2m - 1 and q = 2" - 1, respectively. The resulting period of the bit stream would be pq.
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This is the same order of magnitude as the maximum period 2m' - 1 of a single (n + m)-stage
LFSR using the "same hardware," i.e., n + m registers. Further study is needed to determine if the
adding of the two bit streams would destroy the linearity that caused the weakness in the single
LFSR.

Variations of the above scheme could also be used. For example, the output of one LFSR could
be added to the feedback instead of to the output of the other LFSR. Clearly, more investigation is
needed in these matters.

CONCLUSION

The matrix model of the LFSR provides a powerful tool for analyzing the behavior of the
LFSR. For cryptographic applications, one makes the period q of the bitstream long in comparison to
the keylength 2n. This is best achieved by choosing n so that 2n - 1 is a Mersenne prime and
choosing the characteristic polynomial m(x) of the LFSR to be irreducible. The result is an LFSR
that has the period of every nonzero bitstream equal to the maximal period p = 2n - 1 of the LFSR.

Even when optimized as described above, it can be dangerous to depend on the security pro-
vided by simple LFSR systems. The matrix model provides a straightforward method of cryp-
tanalysis. However, secure secrecy systems can probably be designed by using LFSRs in more
sophisticated ways.
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